Work Breakdown Structure

Test History

- Development test to select adhesive for bonding YSZ to copper cube
 - » Stycast 2850FT
- Support bracket vibration tested
- Ruggedized electronics box vibration tested

Acronym List

•	ADC	Analog to Digital Converter		
•	CG	Center of Gravity		
•	CM	Configuration Management		
•	DAC	Digital to Analog Converter		
•	DMA	Direct Memory Access		
•	FEA	Finite Element Analysis		
•	FMEA	Failure Modes and Effects Analysis		
•	HTS	High Temperature Superconductors		
•	Jc	Critical Current Density		

• JSC	Johnson Space Center
• KSC	Kennedy Space Center
• LaRC	Langley Research Center
• LHB	Langley Handbook
• MIDAS	Materials in Devices as Superconductors
• MLI	Multi Layer Insulation
• NSTS	National Space Transportation System
• OSAT	Office of Space Access and Technology

Acronym List (cont'd)

OSEMA Office of Safety,

Environmental, &

Mission Assurance

SSP Space Shuttle Program

STS Space Transportation

System

TBD To Be Determined

Tc Critical Transition

Temperature

YSZ Yttria Stabilized Zirconia

Structural

Analysis

Jill Marlowe Analysis and Test Engineering Branch August 7, 1995

Structural Analysis Status

	COMET	Shuttle
Electronics Box	FEA: 16.8g per axis $\sigma_{VM} = 25 \text{ ksi}$ FS _{Yield} = 1.44 in mounting feet	Analysis to be done on new box. Stresses in feet should be less with new box.
Support Plate (Modal Analysis) (Stress Analysis)	Dim: 29" x 11" x .3" Aluminum 1st mode (plate) = 21 Hz 1st mode (experiment) = 159 Hz FEA: 12g per axis (simply supported edges) $\sigma_{VM} = 9.5 \text{ ksi}, FS_{Yield} = 3$	Dim: 19" x 16" x .25" Aluminum Analysis to be done. Expect higher 1st bending mode. Analysis to be done (elastic foundation in MDL).
Support Bracket and Cone (Modal Analysis)	1st mode = 260 Hz; 3 other modes < 1000 Hz (dominated by bracket)	Analysis to be done. Cone and cold tip supported by vacuum chamber. Expect higher modes.
$\sigma_{VM} = 4.4 \text{ ksi, } FS_{Yield} = 7 \text{ (bracket)}$ (Stress Analysis) $\sigma_{VM} = 1.5 \text{ ksi, } FS_{Yield} = 24 \text{ (cone)}$		Analysis to be done. Expect equal or lower stresses.

Structural Analysis Status (cont'd)

	COMET	Shuttle	
Copper Ribbon	 Assessed for axial, lateral, and buckling stiffness relative to various cube mounting concepts. Loads travel through cube support when there is slack in the Cu ribbon. 	No change in design	
Vacuum Chamber	20 psi external load: Min. thickness = .125" p _{CRIT BUCK} = 3 ksi σ _{VM max} = 1.6 ksi	Analysis being performed. Thickness not expected to be critical due to smaller size, thicker walls, and low stresses/buckling pressure.	
Cube Support	Seven shapes evaluated. Tapered circular cone selected based on lateral/axial/torsional deflections, stress and critical buckling loads. Wall/flange thickness optimized based on thermal criteria while maintaining stress, bolt force and buckling requirements.	No change in design.	

Structural Analysis Status (cont'd)

	COMET	Shuttle
Vacuum Chamber Bolt Sizing	FEA: 16.8g per axis 10 #10-32 UNC bolts: MS _{Yield} = 0.18 10 #8-32 UNC bolts: MS _{Yield} = 0.12	Analysis to be done. Vacuum chamber is lower to the interface plate, supports less weight, and better distributes load to base. Expect similar bolts to be adequate.

Agenda

- WBS
- Schedule
- Cost
- Workforce
- Commercial Partnerships
- Product Assurance Plan
- Logistics

Thermal Analysis

Ruth Amundsen / Debra Shimek

Analysis and Test Engineering Branch

August 7, 1995

Thermal Analysis Status

Analysis goal	COMET	Shuttle	
Load on cryocooler cold-tip	Used TRW pulse tube. 30% margin on cryocooler load (see	TI tactical cryocooler has 250% higher load capability (1W).	
	chart).	50% margin expected. Minimal changes to cold-tip loading; analysis to be re-run.	
Gradient on HTS boards (<0.25K change during measurement)	Gradients met requirement (see thermal map).	No change in design due to carrier change.	
Instrument model (component hot/cold cases)	All components within acceptable ranges.	Change in design based on fan cooling has been initially modeled (see table). Detailed analysis to be done.	

Note: TRASYS, SINDA-85 and P3/Thermal used in thermal analyses

Thermal Analysis -- Load on Cryocooler

Thermal Analysis -- Fan Selection

- Whisper XL DC (Comair/Rototron) selected
- Flight history on LASE
- 28-99 cfm flow rate -- 85 cfm for MIDAS voltages
- 18 cfm calculated to hold components to 10°C temperature rise
- Factor of 1.5 used to account for screen/filter restriction
- More detailed thermal/flow analysis to be done to determine optimum placement

Thermal Analysis -- Component Status

Component	Cold	Cold	Hot	Hot
(Op temps)	Limit	Prediction	Prediction	Limit
	(°C)	(°C)	(°C)	(°C)
Fan	-10	5	53 (max mover) 48 (nom mover)	70
Ion Pump	0	5	49 (max power) 47 (nom power)	45
Cryocooler	-54	5	67 (max mover) 56 (mm mover)	71
Electronics Box	-25	5	56 (max mover) 49 (mm mover)	70

Note: the top hot case predictions use maximum power steady-state, which is unreasonably conservative. The steady-state analysis with nominal powers is also shown. For the ion pump, the nominal power is not yet known, so maximum was used.

Thermal Analysis Status -- Carrier Temps

Operational Temps

» STS: 18 to 30°C

» Priroda: 5 to 40°C

Survival (non-op) Temperatures

» STS and associated transport: 0 to 49°C

» Priroda and associated transport: -50°C to +50°C (can waive -50°C req. as done on MAPS)

